Local Large Deviations, McMillian Theorem for multitype Galton-Watson Processes

نویسنده

  • Kwabena Doku-Amponsah
چکیده

Abstract. In this article we prove a local large deviation principle (LLDP) for the critical multitype Galton-Watson process from spectral potential point. We define the so-called a spectral potential UK( ·, π) for the Galton-Watson process, where π is the normalized eigen vector corresponding to the leading Perron-Frobenius eigen value 1l of the transition matrix A(·, ·) defined from K, the transition kernel. We show that the Kullback action or the deviation function, J(π, ρ), with respect to an empirical offspring measure, ρ, is the Legendre dual of UK( ·, π). From the LLDP we deduce a conditional large deviation principle and a weak variant of the classical McMillian Theorem for the multitype Galton-Watson process. To be specific, given any empirical offspring measure ̟, we show that the number of critical multitype Galton-Watson processes on n vertices is approximately en〈H̟ , π〉, where H̟ is a suitably defined entropy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariance principles for spatial multitype Galton-Watson trees

We prove that critical multitype Galton-Watson trees converge after rescaling to the Brownian continuum random tree, under the hypothesis that the offspring distribution has finite covariance matrices. Our study relies on an ancestral decomposition for marked multitype trees. We then couple the genealogical structure with a spatial motion, whose step distribution may depend on the structure of ...

متن کامل

Measure change in multitype branching∗

The Kesten-Stigum theorem for the one-type Galton-Watson process gives necessary and sufficient conditions for mean convergence of the martingale formed by the population size normed by its expectation. Here, the approach of Lyons, Peres and Pemantle (1995) to this theorem, which exploits a change of measure argument, is extended to martingales defined on Galton-Watson processes with a general ...

متن کامل

Some Asymptotic Results for near Critical Branching Processes*

Near critical single type Bienaymé-Galton-Watson (BGW) processes are considered. It is shown that, under appropriate conditions, Yaglom distributions of suitably scaled BGW processes converge to that of the corresponding diffusion approximation. Convergences of stationary distributions for Q-processes and models with immigration to the corresponding distributions of the associated diffusion app...

متن کامل

Local Limit Theory and Large Deviations for Supercritical Branching Processes

In this paper we study several aspects of the growth of a supercritical Galton–Watson process {Zn :n ≥ 1}, and bring out some criticality phenomena determined by the Schröder constant. We develop the local limit theory of Zn, that is, the behavior of P (Zn = vn) as vn ր ∞, and use this to study conditional large deviations of {YZn :n ≥ 1}, where Yn satisfies an LDP, particularly of {Z −1 n Zn+1...

متن کامل

Lower Deviation Probabilities for Supercritical Galton-watson Processes

There is a well-known sequence of constants cn describing the growth of supercritical Galton-Watson processes Zn . With “lower deviation probabilities” we refer to P(Zn = kn) with kn = o(cn) as n increases. We give a detailed picture of the asymptotic behavior of such lower deviation probabilities. This complements and corrects results known from the literature concerning special cases. Knowled...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1705.09967  شماره 

صفحات  -

تاریخ انتشار 2017